
SIGNAL CONVERSION SYSTEMS 
Analog-to-Digital and Digital-to-Analog conversion 

• Most signals of practical interest, such as 
speech, biological signals, seismic signals, 
audio and video signals are analog. 

• To process analog signals by digital means, it is 
first necessary to convert them into digital 
form i.e., as a sequence of numbers having 
finite precision. 

•  This procedure is called analog-to-digital 
(A/D) conversion. 



A/D conversion viewed as a three-step process 

1. Sampling. Conversion of a continuous-time signal into a discrete-
time signal obtained by taking “samples’" of the continuous-time 
signal at discrete-time instants. If xa(t) is the input to the sampler, 
the output is xa(nT), where T is called the sampling interval.  

2. Quantization. Conversion of a discrete-time continuous-valued 
signal into a discrete-time, discrete-valued (digital) signal, xq(n). The 
value of each signal sample is represented by a value selected from 
a finite set of possible values.  

3. Coding. In the coding process, each discrete value xq(n) is 
represented by a b-bit binary sequence. 
 



Digital-to-Analog conversion 

• In many cases of practical interest (e.g., speech processing) 
it is desirable to convert the processed digital signals into 
analog form. (Obviously, we cannot listen to the sequence 
of samples representing a speech signal). 

• The process of converting a digital signal into an analog 
signal is known as digital-to-analog (D/A) conversion. 

•  A simple form of D/A conversion is called a zero-order hold 
or a staircase approximation.  

• Other approximations are possible, such as linearly 
connecting a pair of successive samples (linear 
interpolation), fitting a quadratic through three successive 
samples (quadratic interpolation), and so on.  

• For signals having a limited frequency content (finite 
bandwidth), the sampling theorem specifies the optimum 
form of interpolation.  



Sampling and Aliasing 

• Sampling does not result in a loss of information, nor does 
it introduce distortion in the signal if the signal bandwidth 
is finite.  

• In principle, the analog signal can be reconstructed from 
the samples, provided that the sampling rate is sufficiently 
high to avoid the problem commonly called aliasing.  

• On the other hand, quantization is a noninvertible or 
irreversible process that results in signal distortion.  

• The amount of distortion is dependent on the accuracy, as 
measured by the number of bits, in the A/D conversion 
process. 

•  The factors affecting the choice of the desired accuracy of 
the A/D converter are cost and sampling rate. In general, 
the cost increases with an increase in accuracy and/or 
sampling rate. 



Sampling of Analog Signals 
 • There are many ways to sample an analog signal. Periodic or uniform 

sampling is the type of sampling used most often in practice.  
• This is described by the relation 

 
where x(n) is the discrete-time signal obtained by “taking samples” of the 
analog signal xa(t) every T seconds.  



• The time interval T between successive samples is called 
the sampling period or sample interval. 

• Reciprocal 1/ T = Fs is called the sampling rate (samples 
per second) or the sampling frequency (hertz).  

• Periodic sampling establishes a relationship between the 
time variables t and n of continuous-time and discrete-
time signals, respectively. Indeed, these variables are 
linearly related through the sampling period T or, 
equivalently, through the sampling rate Fs , as 

 

 

• As a consequence, there exists a relationship between 
the frequency variable F (or Ω) for analog signals and the 
frequency variable f (or 𝜔) for discrete-time signals.  

 

 



 

Consider an analog sinusoidal signal of the form 

 which, when sampled periodically at a rate Fs samples per second, yields  

 

 

 

If we compare xa(nT) with  

 

we note that the frequency variables F and f are linearly related as, 

 

or, equivalently, as  

 

The range of the frequency variable F or Ω for continuous-time sinusoids are 

 

 

 

 



 
However, the situation is different for discrete-time sinusoids. 
 
  
 
By substituting f=F/Fs and 𝜔 = ΩT into the above representation, we find that 
the frequency of the continuous-time sinusoid when sampled at a rate Fs = 
1/T must fall in the range 
 
 
or, equivalently. 
 
 
 
From these relations we observe that the fundamental difference between 
continuous-time and discrete-time signals is in their range of values of the 
frequency variables F and f, or Ω and 𝜔. Periodic sampling of a continuous-
time signal implies a mapping of the infinite frequency range for the variable 
F (or Ω) into a finite frequency range for the variable f (or 𝜔).  



• Since the highest frequency in a discrete-time signal is 

                           , it follows that, with a sampling rate Fs, the 
corresponding highest values of F and Ω are  

 

 

The implications of these frequency relations can be fully 
appreciated by considering the two analog sinusoidal 
signals  

 

which are sampled at a rate Fs = 40 Hz. The corresponding 
discrete-time signals or sequences are 

 

 

 

 



However, 
Hence x2(n)=x1(n) .  
 Since x2(t) yields exactly the same values as x1(t) 
when the two are sampled at Fs=40 samples per second, 
we say that the frequency F2=50 Hz is an alias of the 
frequency F1 = 10 Hz at the sampling rate of 40 samples 
per second.  
 F2 is not the only alias of F1.  
 In fact at the sampling rate of 40 samples per 
second, the frequency F3 = 90 Hz is also an alias of F1, as 
is the frequency F4 = 130 Hz, and so on.  
 All of the sinusoids cos2𝜋(F1+40k)t, k = 1, 2, 3, 
4.... sampled at 40 samples per second, yield identical 
values.  
 Consequently, they are all aliases of F1 = 10 Hz. 
 



In general, the sampling of a continuous-time sinusoidal 
signal 
 
with a sampling rate Fs = 1 /T results in a discrete-time 
signal 
 
 where f0 = Fo/Fs, is the relative frequency of the 
sinusoid. 
  If we assume that   -Fs/2 < Fo < Fs/2, the frequency 
f0 of x(n) is in the range -1/2 < f0 < 1/2 which is the 
frequency range for discrete-time signals.  
 In this case, the relationship between Fo and f0 is 
one-to-one, and hence it is possible to identify (or 
reconstruct) the analog signal xa(t) from the samples x(n). 
 

 



 If the sinusoids 
 
 

 
 
 
are sampled at a rate Fs, it is clear that the frequency Fk is outside the 
fundamental frequency range —Fs/2 < F < Fs/2. Consequently, the sampled 
signal is 
 
 
 
 
 
Thus an infinite number of continuous-time sinusoids is represented by the 
same discrete-time signal (i.e.. by the same set of samples).  
Consequently, if we are given the sequence x(n) an ambiguity exists as to 
which continuous-time signal xa(t) these values represent. 
The frequencies Fk = F0+kFs, —∞ < k < ∞ (k integer) are indistinguishable 
from the frequency F0 after sampling and hence they are aliases of F0. 
 

 



The Sampling Theorem 
 

 
• Given any analog signal, how should we select the sampling 

period T or, equivalently, the sampling rate Fs.  
• we must have some information about the characteristics 

of the signal to be sampled.  
• In particular, we must have some general information 

concerning the frequency content of the signal.  
• For example, we know generally that the major frequency 

components of a speech signal fall below 3000 Hz. On the 
other hand, television signals, in general, contain important 
frequency components up to 5 MHz.  

• However, if we know the maximum frequency content of 
the general class of signals (e.g.. the class of speech signals, 
the class of video signals, etc.). we can specify the sampling 
rate necessary to convert the analog signals to digital 
signals.  



• Let us suppose that any analog signal can be 
represented as a sum of sinusoids of different 
amplitudes, frequencies, and phases, that is 
 
 

     where N denotes the number of frequency 
components.  
• Since the maximum frequency may vary slightly, 

we may wish to ensure that Fmax does not 
exceed some predetermined value by passing the 
analog signal through a filter that severely 
attenuates frequency components above Fmax.  

• In practice, such filtering is commonly used prior 
to sampling.  

 



• From our knowledge of Fmax, we can select the appropriate 
sampling rate.  

• We know that the highest frequency in an analog signal that can be 
unambiguously reconstructed when the signal is sampled at a rate 
Fs = 1/T,  is Fs /2. Any frequency above Fs /2 or below - Fs /2 results in 
samples that are identical with a corresponding frequency in the 
range   - Fs/2< F < Fs /2.  

• To avoid the ambiguities resulting from aliasing, we must select the 
sampling rate to be sufficiently high. That is, we must select Fs /2 to 
be greater than Fmax. Thus to avoid the problem of aliasing, Fs is 
selected so that Fs > 2 Fmax.where Fmax is the largest frequency 
component in the analog signal.  

• With the sampling rate selected in this manner, any frequency 
component, say | Fi | < Fmax, in the analog signal is mapped into a 
discrete-time sinusoid with a frequency 



• Since, |f| = 1\2 or |𝜔| = 𝜋 is the highest (unique) 
frequency in a discrete-time signal, the above way of 
choice of sampling rate avoids the problem of aliasing.  

• In other words, the condition Fs > 2Fmax ensures that 
all the sinusoidal components in the analog signal are 
mapped into corresponding discrete-time frequency 
components with frequencies in the fundamental 
interval.  

• Thus all the frequency components of the analog signal 
are represented in sampled form without ambiguity, 
and hence the analog signal can be reconstructed 
without distortion from the sample values using an 
“appropriate” interpolation (digital-to-analog 
conversion) method.  

• The “appropriate” or ideal interpolation formula is 
specified by the sampling theorem. 
 



• Sampling Theorem. If the highest frequency contained in an analog 
signal xa(t) is Fmax = B and the signal is sampled at a rate Fs > 2 Fmax = 
2B, then xa(t) can be exactly recovered from its sample values using 
the interpolation function 
 

 
• Thus xa(t) may be expressed as 

 
 
 

• When the sampling of xa(t) is performed at the minimum sampling 
rate Fs = 2B, the reconstruction formula in becomes 
 
 
 

• The sampling rate Fs = 2B = 2Fmax is called the Nyquist rate.  



• Figure illustrates the ideal D/A conversion process using the 
interpolation function g(t).  

• The reconstruction of xa(t) from the sequence x(n) is a complicated 
process, involving a weighted sum of the interpolation function g(t) 
and its time-shifted versions g(t—nT) for —∞ < n < ∞, where the 
weighting factors are the samples x(n).  

• Because of the complexity and the infinite number of samples 
required, the reconstruction in practice, is usually performed by 
combining a D/A converter with a sample-and-hold (S/H) and a 
lowpass filter. 
 



• The D/A converter accepts at its input, electrical signals that correspond to a binary 
word, and produces an output voltage or current that is proportional to the value of 
the binary word.  

• Ideally, its input-output characteristic is as shown in Figure for a 3-bit bipolar signal.  



• An important parameter of a D/A converter is its settling time, 
which is defined as the time required for the output of the D/A 
converter to reach and remain within a given fraction (usually, 
±1/2LSB) of the final value, after application of the input code 
word. 

•  Often, the application of the input code word results in a high-
amplitude transient, called a “glitch.” This is especially the case 
when two consecutive code words to the A/D differ by several 
bits.  

• The usual way to remedy this problem is to use a S/H circuit 
designed to serve as a “deglitcher.” 

•  Hence the basic task of the S/H is to hold the output of the D/A 
converter constant at the previous output value until the new 
sample at the output of the D/A reaches steady state, then it 
samples and holds the new value in the next sampling interval.  

• Thus the S/H approximates the analog signal by a series of 
rectangular pulses whose height is equal to the corresponding 
value of the signal pulse.  



• Figure illustrates the approximation of the analog signal x(t) by a S/H.  
• As shown, the approximation, is basically a staircase function which 

takes the signal sample from the D/A converter and holds it for T 
seconds. When the next sample arrives, it jumps to the next value and 
holds it for T seconds, and so on. 
 



• The S/H when viewed as a linear filter, has an impulse response as shown 
in Figure,  

 

 
 

 

 

 

• The corresponding frequency response is 

 

 

 

 

 

 

 

 



• For comparison, the frequency response of the ideal interpolator is 
superimposed on the magnitude characteristics.  

• It is apparent that the S/H does not possess a sharp cutoff frequency 
response characteristic. This is due to a large extent to the sharp 
transitions of its impulse response h(t).  

• As a consequence, the S/H passes undesirable aliased frequency 
components (frequencies above Fs/2) to its output.  

• To remedy this problem, it is common practice to filter these 
components by passing through a lowpass filter. 
 





EFFICIENT COMPUTATION OF THE DFT: FFT ALGORITHMS 

• Basically, the computational problem for the DFT is to compute the 
sequence {X(k)} of N complex-valued numbers given another 
sequence of data {x(n)} of length N, according to the formula 

 
                    
                  
                    where     

 
• In general, the data sequence x(n) is also assumed to be complex 

valued. Similarly, the IDFT becomes 
 

 
 

• Since the DFT and IDFT involve basically the same type of 
computations, our discussion of efficient computational algorithms 
for the DFT applies as well to the efficient computation of the IDFT. 
 
 



• We observe that for each value of k, direct computation of 
X(k) involves N complex multiplications (4N real 
multiplications) and N - 1 complex additions (4N-2 real 
additions).  

• Consequently, to compute all N values of the DFT requires 
N2 complex multiplications and N2 - N complex additions.  

• Direct computation of the DFT is basically inefficient 
primarily because it does not exploit the symmetry and 
periodicity properties of the phase factor WN  

• In particular, these two properties are:  
 
 Symmetry property: WN

k+N/2 = -WN
k  

             Periodicity property: WN
k+N = WN

k  
 
The computationally efficient algorithms, known collectively 
as fast Fourier transform (FFT) algorithms, exploit these two 
basic properties of the phase factor. 

 



 Divide-and-Conquer Approach to 
Computation of the DFT 

• The development of computationally efficient 
algorithms for the DFT is made possible if we 
adopt a divide-and-conquer approach.  

• This approach is based on the decomposition 
of an N-point DFT into successively smaller 
DFTs.  

• This basic approach leads to a family of 
computationally efficient algorithms known 
collectively as FFT algorithms. 



• Let us consider the computation of an N-point DFT, 
where N can be factored as a product of two integers, 
that is,  

    N = LM  
• The assumption that N is not a prime number is not 

restrictive, since we can pad any sequence with zeros to 
ensure a factorization of the form  

• Now the sequence x(n), 0 < n < N — 1, can be stored in 
either a one dimensional array indexed by n or as a two-
dimensional array indexed by I and m, where 0 < l < L — 
1 and 0<m<M-1.  

• Note that l is the row index and m is the column index.  
• Thus, the sequence x(n) can be stored in a rectangular 

array in a variety of ways, each of which depends on the 
mapping of index n to the indexes (l, m). 



• When we select the mapping n = Ml + m.  

• This leads to an arrangement in which the first row 
consists of the first M elements of x(n), the second row 
consists of the next M elements of x(n), and so on, as 
illustrated in Fig (a).  

• On the other hand, the mapping n = l + mL stores the 
first L elements of x(n) in the first column, the next L 
elements in the second column, and so on, as 
illustrated in Fig (b). 

• A similar arrangement can be used to store the 
computed DFT values.  

• In particular, the mapping is from the index k to a pair 
of indices (p, q), where 0 < p < L - 1 and 0 < q < M - 1.  





• If we select the mapping 

 k = Mp + q  

the DFT is stored on a row-wise basis, where the first row contains the first M 
elements of the DFT X(k), the second row contains the next set of M 
elements, and so on.  

• On the other hand, the mapping k = qL + p results in a column-wise 
storage of X (k), where the first L elements are stored in the first column, 
the second set of L elements are stored in the second column, and so on. 

• When x(n) is mapped into the rectangular array x(l,m) and X(k) is mapped 
into a corresponding rectangular array X(p, q).  

 Then the DFT can be expressed as a double sum over the elements 
of the rectangular array multiplied by the corresponding phase factors.  

 

 

 



• With these simplifications, 

 

 

The expression involves the computation of DFTs of 
length M and length L.  

• Let us subdivide the computation into three steps: 

 1. First, we compute the M-point DFTs for each 
of the rows I = 0,1........L-1, the term within square 
brackets. 

 

 

 

 



  2.Second, we compute a new rectangular array G(l,q) defined 
as 

 
   
 
  3. Finally, we compute the L-point DFTs for each column q = 
0,1,..., M — 1, of the array G(l, q). 
 
 
  
 
The first step involves the computation of L DFTs, each of M 
points. Hence this step requires LM2 complex multiplications 
and LM(M — 1) complex additions.  
The second step requires LM complex multiplications.  
Finally, the third step in the computation requires ML2 
complex multiplications and ML(L — 1) complex additions.  

 
 
 



• Therefore, the computational complexity is 
 Complex multiplications: N(M + L + 1)  
 Complex additions: N(M + L - 2) 
            where N = ML.  
• Thus the number of multiplications has been 

reduced from N2 to N(M + L +1) and the number of 
additions has been reduced from N(N - 1) to N(M + L 
- 2).  

When N is a highly composite number, that is, N can be 
factored into a product of prime numbers of the form 
        N = r1r2 …r 

𝛾 

then the decomposition above can be repeated (𝛾 -1 ) 
more times. This procedure results in smaller DFTs, 
which, in turn, leads to a more efficient computational 
algorithm.  



The algorithm involves the following 
computations: 

Algorithm 1 
1. Store the signal column-wise. 

 2. Compute the M-point DFT of each row.  

3. Multiply the resulting array by the phase factors  

4. Compute the L-point DFT of each column  

5. Read the resulting array row-wise. 

An additional algorithm with a similar 
computational structure can be obtained if the 
input signal is stored row-wise and the resulting 
transformation is column-wise.  





Algorithm 2 

1. Store the signal row-wise.  

2. Compute the L-point DFT at each column.  

3. Multiply the resulting array by the phase factors.  

4. Compute the M-point DFT of each row.  

5. Read the resulting array column-wise. 

• The two algorithms have the same complexity. However, 
they differ in the arrangement of the computations.  

• In Radix-2 FFT Algorithms, the divide-and-conquer 
approach to derive fast algorithms when the size of the 
DFT is restricted to be a power of 2. 



Radix-2 FFT Algorithms 

• When N is a highly composite number, that is, N can be 
factored into a product of prime numbers of the form 

                                      N = r1r2 …r 
𝛾 

     then the decomposition can be repeated (𝛾 -1 ) times.  

• This procedure results in smaller DFTs, which, in turn, 
leads to a more efficient computational algorithm.  

• The case in which r1  = r2 =…r 
𝛾 so that N = r 𝛾  

• In such a case the DFTs are of size r, so that the 
computation of the N-point DFT has a regular pattern.  

• The number r is called the radix of the FFT algorithm.  

• Let us consider the computation of the N = 2𝛾 point 
DFT by the divide- and-conquer approach. 

 



• When we select M = N/2 and L = 2 which results in a split of the N-point 
data sequence into two N/2-point data sequences f1(n) and f2(n), 
corresponding to the even-numbered and odd-numbered samples of x(n), 
respectively, that is, 

 

 

• Thus f1(n) and f2(n) are obtained by decimating x(n) by a factor of 2, and 
hence the resulting FFT algorithm is called a decimation-in-time algorithm. 

• Now the N-point DFT can be expressed in terms of the DFTs of the 
decimated sequences as follows:  



• But  WN
2=WN/2, With this substitution, X(k) can be expressed as 

 

 

 

• where F1(k) and F2(k) are the N/2-point DFTs of the sequences f1(m) and 
f2(m), respectively. 

• Since F1(k) and F2(k) are periodic, with period N /2, we have F1(k+ N/2) = 
F1(k) and F2(k+ N/2) = F2(k). In addition, the factor WN

k+N/2 = -WN
k.  

• Hence 

 

 

 

• The computation of X(k) requires 2(N/2)2+N/2 = N2/2 + N/2 complex 
multiplications. This first step results in a reduction of the number of 
multiplications from N2 to N2/2 + N/2 , which is about a factor of 2 for N 
large. 



      we may define 

 

 

• Then the DFT X (k) may be expressed as 

 

 

 

• We can repeat the process for each of the sequences f1(n) and f2(n).  

       Thus f1(n) would result in the two N/4-point sequences 

 

 

 

      and f2(n) would yield 

 

 

 



• By computing N/4-point DFTs, we would obtain the N/2-point DFTs F1(k) 
and F2(k) from the relations 

 

 

 

 

 

 

      where the {Vij(k)} are the N/4-point DFTs of the sequences {Vij(n)}. 

• The computation of {Vij(k)} requires 4(N/4)2 multiplications and hence the 
computation of F1(k) and F2(k) can be accomplished with N2/4 + N/2 
complex multiplications.  

• An additional N/2 complex multiplications are required to compute X(k) 
from F1(k) and F2(k).  

• Consequently, the total number of multiplications is reduced 
approximately by a factor of 2 again to N2/4 + N. 

 



• The decimation of the data sequence can be repeated again and again 
until the resulting sequences are reduced to one-point sequences. 

• For N = 2𝛾 , this decimation can be performed 𝛾 = log2 N times.  
• Figure depicts the computation of an N = 8 point DFT. The 

computation is performed in three stages, beginning with the 
computations of four two-point DFTs, then two four-point DFTs, and 
finally, one eight-point DFT.  
 



• the basic computation performed at every stage, is to take 
two complex numbers, say the pair (a, b), multiply b by WN

r, 
and then add and subtract the product from a to form two 
new complex numbers (A, B).  

• This basic computation, which is shown in Figure, is called a 
butterfly because the flow graph resembles a butterfly.  

• In general, each butterfly involves one complex multiplication 
and two complex additions.  

• For N = 2𝛾 , there are N/2 butterflies per stage of the 
computation process and log2N stages. Therefore, as 
previously indicated the total number of complex 
multiplications is (N/2)log2N and complex additions is Nlog2N  



Eight point decimation-in-time FFT algorithm 



Decimation-in-frequency algorithm 

• Another important radix-2 FFT algorithm, called the decimation-in-
frequency algorithm, is obtained by using the divide-and-conquer 
approach with the choice of M = 2 and L = N/2.  

• This choice of parameters implies a column-wise storage of the input data 
sequence.  

• To derive the algorithm, we begin by splitting the DFT formula into two 
summations, one of which involves the sum over the first N/2 data points 
and the second sum involves the last N/2 data points.  

 

 

 

        

        

 since WN
kN/2

 = (-1)k, the expression can be rewritten as 

 



• let us split (decimate) X(k) into the even- and odd-numbered samples. 
Thus we obtain 

 

 

 

 

 where we have used the fact that WN
2=WN/2. 

• If we define the N/2-point sequences g1(n) and g2(n) as 



• This computational procedure can be repeated through decimation of the 
N/2-point DFTs, X(2k) and X(2k + 1). The entire process involves 𝛾 = log2 N 
stages of decimation, where each stage involves N/2 butterflies of the 
type shown in Figure.  

• Consequently, the computation of the N-point DFT via the decimation- in-
frequency FFT algorithm, requires (N/2) log2 N complex multiplications 
and Nlog2N complex additions, just as in the decimation-in-time algorithm.  

 



Eight point decimation-in-frequency FFT algorithm 



DIGITAL FILTER DESIGN 

UNIT-II 



 IIR Filter Design by Impulse Invariance 

 • To design an IIR filter having a unit sample response h(n) that is the 
sampled version of the impulse response of the analog filter. That is,  

 

• when a continuous time signal xa(t) with spectrum Xa(F) is sampled at a 
rate Fs =1/T samples per second, the spectrum of the sampled signal is the 
periodic repetition of the scaled spectrum FsXa(F) with period Fs. 
Specifically, the relationship is 

 

 

• where f = F/Fs is the normalized frequency. Aliasing occurs if the sampling 
rate Fs is less than twice the highest frequency contained in Xa(F). 

• Sampling the impulse response of an analog filter with frequency 
response Ha(F), the digital filter with unit sample response h(n)=ha(nT)  
has the frequency response 

  



• equivalently, 



• The digital filter with frequency response H( 𝜔 ) has the frequency 
response characteristics of the corresponding analog filter if the sampling 
interval T is selected sufficiently small to completely avoid or at least 
minimize the effects of aliasing.  

• It is also clear that the impulse invariance method is inappropriate for 
designing highpass filters due the to spectrum aliasing that results from 
the sampling process.  

• To investigate the mapping of points between the z-plane and the s-plane 
implied by the sampling process,  

 

 

 

                    where 



• Let us consider the mapping of points from the s-plane to the z-plane 
implied by the relation  

 

• If we substitute s = 𝜎 + 𝑗Ω  and express the complex variable z in polar 
form as z = rej𝜔, the above equation becomes  

 

 

                 Clearly we have 

 

 

• Consequently, 𝜎 < 0 implies that 0 < r < 1 and 𝜎 > 0 implies that r > 1. 
When 𝜎 = 0, we have r = 1. Therefore, the LHP in s is mapped inside the 
unit circle in z and the RHP in s is mapped outside the unit circle in z.  

• Also, the jΩ -axis is mapped into the unit circle in z as indicated.  

• However, the mapping of the jΩ -axis into the unit circle is not one-to-one. 

 

 



• Since 𝜔 is unique over the range (—𝜋, 𝜋), the mapping 𝜔 = Ω T implies 
that the interval —𝜋/T < Ω < 𝜋 /T maps into the corresponding values of 
— 𝜋 < 𝜔 < 𝜋.  

• Furthermore, the frequency interval 𝜋 /T < Ω  < 3 𝜋 /T also maps into the 
interval —𝜋 < 𝜔 < 𝜋 and, in general, so does the interval (2k - 1) 𝜋 /T < Ω < 
(2k +1) 𝜋 /T, when k is an integer.  

• Thus the mapping from the analog frequency Ω to the frequency variable 
𝜔 in the digital domain is many-to-one, which simply reflects the effects of 
aliasing due to sampling. 



• The system function of the analog filter in partial-fraction form on the 
assumption that the poles of the analog filter are distinct 

 

  

 where {pk} are the poles of the analog filter and {ck} are the 
coefficients in the partial-fraction expansion.  

 

 

If we sample ha(t) periodically at t = nT, we have 

 

 

Now, with the substitution of h(n), the system function of the resulting digital 
IIR filter becomes 

 



• The inner sum converges because pk < 0 and yields 

 

 

 

• Therefore, the system function of the digital filter is 

 

  

 

 We observe that the digital filter has poles at 

 

 

• Although the poles are mapped from the s-plane to the z-plane by the 
above relationship, we should emphasize that the zeros in the two 
domains do not satisfy the same relationship. The development that 
resulted in H(z) was based on a filter having distinct poles. It can be 
generalized to include multiple-order poles.  









Bilinear transformation method 

• Impulse invariant transformation method. is appropriate only for 
the design of low-pass filters and band pass filters whose resonant 
frequencies are small. These techniques are not suitable for high-
pass or band reject filters.  

• The limitation is overcome in the mapping technique called the 
bilinear transformation.  

•  This transformation is a one-to-one mapping from the s-domain to 
the z-domain.  

• That is, the bilinear transformation is a conformal mapping that 
transforms the imaginary axis of s-plane into the unit circle in the z-
plane only once, thus avoiding aliasing of frequency components.  

• In this mapping, all points in the left half of s-plane are mapped 
inside the unit circle in the z-plane, and all points in the right half of 
s-plane are mapped outside the unit circle in the z-plane.  

• So the transformation of a stable analog filter results in a stable 
digital filter.  











 
 
 
 

• the mapping is non-linear and the lower frequencies in analog 
domain are expanded in the digital domain, whereas the higher 
frequencies are compressed.  

• This is due to the nonlinearity of the arctangent function and 
usually known as frequency warping.  

• In designing digital filter using bilinear transformation, the effect of 
warping on amplitude response can be eliminated by prewarping 
the analog filter. 

•  In this method, the specified digital frequencies are converted to 
analog equivalent  and these analog frequencies are called prewarp 
frequencies.  

• Using the prewarp frequencies, the analog filter transfer function is 
designed, and then it is transformed to digital filter transfer 
function.  
 
 





 

 

THE MAGNITUDE RESPONSE OF LOW-PASS FILTER IN TERMS OF GAIN AND ATTENUATION  







DESIGN OF LOW-PASS DIGITAL BUTTERWORTH FILTER  
 • To design a Butterworth IIR digital filter, first an analog Butterworth filter 

transfer function is determined using the given specifications. 

•  Then the analog filter transfer function is converted to a digital filter 
transfer function using either impulse invariant transformation or bilinear 
transformation. 

• The analog Butterworth filter is designed by approximating the ideal 
frequency response using an error function. The error function is selected 
such that the magnitude is maximally flat in the passband and 
monotonically decreasing in the stopband.  

• The magnitude response of low-pass filter obtained by this approximation 
is given by 

 

 

 where Ω𝑐 is the 3 dB cutoff frequency and N is the order of the filter. 

 








